de     

Hints for authors

The SImg Wiki bases on a DokuWiki. For editing pages a registration is required.

Structure

As every DokuWiki this Wiki is structured using namespaces, similar to directories. For example, ref:simg-add refers to the page simg-add in the namespace (directory) ref.

For every namespace a navigation bar can be generated by creating the page sidebar in the corresponding namespace. If this page does not exist, the version of the next higher level namespace is used.

Language

This is a multi-language Wiki written in English and German. But there is no need to contribute the content in both languages. English articles should be preferred since they are understandable by a larger audience.

The language is selected by the navigation elements or by language preferences of your browser. (E.g.for Mozilla: Edit → Preferences → Navigator → Languages)

German articles are in the namespace de. For articles which exist in both languages equal page names should be used, e.g. ref:simg-add and de:ref:simg-add.

Spell checking

The SImg Wiki supports spell checking. Spell check is started by pressing the spellcheck button. After that all unknown words are marked and can be modified by clicking. By pressing the spllcheckstop button the correction mode is terminated.

Syntax extensions

Besides the standard syntax also Latex formatted text can be included in form of images. This is especially useful for formulas. Because HTML text with many formulas embedded as images locks quite ugly, also larger sections of the content can be typeset using Latex.

:!: Larger Latex sections should be split and translated into several small pieces, as demonstrated in the third example below. :!:

Here are some examples:


1. A small formula:

<latex>
$a+\frac{1}{3}b=\gamma$
</latex>

Graph


2. A longer Formula

<latex>
$$\int_{\partial\Omega} v (v\cdot\nu) dS = \int_{\Omega} v (v \cdot \nabla) dV$$
</latex>

Graph


3. A larger section split into two snippets

<latex>
For the velocity $v$, the pressure $p$ and the temperature $u$ follows from the mass conservation
\begin{equation*}
  \nabla \cdot v = 0 \text{~.}
\end{equation*}
</latex>

<latex>
From the momentum conservation follows
\begin{equation*}
  v_t = v(\nabla\cdot v) - \frac{\varepsilon}{\rho}\Delta v + \frac{1}{\rho}\nabla p = -g\gamma(u-u_{\operatorname{ref}}) \text{~,}
\end{equation*}
where $\varepsilon$ denotes the dynamic viscosity, $\rho$ the pressure, $g$ gravitational acceleration
\dots
</latex>

Graph

Graph

 
hints.txt · Last modified: 2013/08/07 11:30 by stefan
 
Recent changes RSS feed Creative Commons License Powered by PHP Debian Driven by DokuWiki